- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Chen, Carol (1)
-
Gaboardi, Marco (1)
-
Moss, J. Eliot (1)
-
Norrish, Michael (1)
-
Qu, Weihao (1)
-
Stoughton, Alley (1)
-
Thomas, Philip S. (1)
-
Yeager, Jared (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
Andronick, June (2)
-
de Moura, Leonardo (2)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Andronick, June; de Moura, Leonardo (Ed.)We use the EasyCrypt proof assistant to formalize the adversarial approach to proving lower bounds for computational problems in the query model. This is done using a lower bound game between an algorithm and adversary, in which the adversary answers the algorithm’s queries in a way that makes the algorithm issue at least the desired number of queries. A complementary upper bound game is used for proving upper bounds of algorithms; here the adversary incrementally and adaptively realizes an algorithm’s input. We prove a natural connection between the lower and upper bound games, and apply our framework to three computational problems, including searching in an ordered list and comparison-based sorting, giving evidence for the generality of our notion of algorithm and the usefulness of our framework.more » « less
-
Yeager, Jared; Moss, J. Eliot; Norrish, Michael; Thomas, Philip S. (, Leibniz international proceedings in informatics)Andronick, June; de Moura, Leonardo (Ed.)There are reinforcement learning scenarios - e.g., in medicine - where we are compelled to be as confident as possible that a policy change will result in an improvement before implementing it. In such scenarios, we can employ off-policy evaluation (OPE). The basic idea of OPE is to record histories of behaviors under the current policy, and then develop an estimate of the quality of a proposed new policy, seeing what the behavior would have been under the new policy. As we are evaluating the policy without actually using it, we have the "off-policy" of OPE. Applying a concentration inequality to the estimate, we derive a confidence interval for the expected quality of the new policy. If the confidence interval lies above that of the current policy, we can change policies with high confidence that we will do no harm. We focus here on the mathematics of this method, by mechanizing the soundness of off-policy evaluation. A natural side effect of the mechanization is both to clarify all the result’s mathematical assumptions and preconditions, and to further develop HOL4’s library of verified statistical mathematics, including concentration inequalities. Of more significance, the OPE method relies on importance sampling, whose soundness we prove using a measure-theoretic approach. In fact, we generalize the standard result, showing it for contexts comprising both discrete and continuous probability distributions.more » « less
An official website of the United States government

Full Text Available